Quick Start User Manual: WRguide

1.0 Getting Ready:

The software product you purchased is located inside a ZIP file that you can open, by following these steps:

- 1. Double-click on the ZIP file you purchased. This action starts the ZIP Wizard application, which contains the software product.
- 2. The ZIP Wizard automatically opens the software product you purchased and stores it inside your computer.
- 3. Once the software product is unzipped, right-click on the application's *filename* and single-click: "Extract". This action will extract all files located inside the software product and store them inside your computer:
 - a. *WRguide.exe*: The executable software product.
 - b. WRguide.DEF: Default Data File read by WRguide.exe
 - c. Quick Start User Manual: This User Manual.
 - d. *License*: License Agreement for the software product.
- 4. NOTE: All files unzipped inside your computer must be located in the same file folder, since several Data Files are read by the executable software product.
- 5. Open the License Agreement so you know the terms & conditions for using the software product. Return the software product for a full refund if you do not agree with those terms & conditions, as stated in the License Agreement.
- 6. Open the Default Data File: *WRguide.DEF* using Notepad and read the description contained inside.

Once the above software files are extracted and stored inside your computer, just double-click on the executable file to start using the product.

2.0 How I Works:

Software product: *WRguide.exe* performs Electrical Synthesis, Dimensional Synthesis and Frequency Analysis of any Rectangular Waveguide Transmission Line.

The executable file: *WRguide.exe* reads the Default Data File: *WRguide.DEF* each time you start the program. As such, you can change Data Entries inside *WRguide.DEF* to suite your

Atlanta RF LLC Office: 770-645-0315 www.AtlantaRF.com

Quick Start User Manual:

most common Rectangular Waveguide Transmission Line designs, using the guidelines written in *WRguide.DEF*.

When you start using the software product, you are asked to enter key design parameters for your Rectangular Waveguide Transmission Line. If you press <ENTER> on your computer's keyboard, the software product uses the Data Entry from your Default Data File: *WRguide.DEF* for that design parameter. As such, you can change any/all Data Entries in *WRguide.DEF* suite your most common Rectangular Waveguide designs, without having to enter those values when asked by the executable file: *WRguide.exe*. Just press <ENTER> on your computer's keyboard and your Default Data values are used for that Data entry by the software product.

Figure 2-1 shows the baseline data entries for Default Data file: WRguide.DEF.

Certain design parameters have a "default answer", shown as an asterisk (*), which enables you to press $\langle ENTER \rangle$ on your keyboard, if that "default answer" (= *) is your selection.

Lastly, all Data entries (including Default Data entries) are included in the Output Data format so you know the basis for your Synthesis and for your Analysis of Rectangular Waveguide Transmission Lines.

Most data entries are straight-forward and easy to understand for those skill-at-the-art of RF/microwave design......and those not-so-skilled. So, let us know where improvements are needed as you operate the software product.

3.0 Screen Shots: Input Data

Screen-shots for User Input Data entry are shown in Figures 3-1 and Figure 3-2 for Dimensional Synthesis and for Frequency Analysis of your Rectangular Waveguide Transmission Lines, respectively. Input Data entry is intuitive and straight-forward for the User.

4.0 Screen Shots: Output Data

Screen-shots of Output Data calculated by the software product are shown in Figures 4-1 and Figure 4-2 for Dimensional Synthesis and for Frequency Analysis of your Rectangular Waveguide Transmission Lines, respectively.

The Output Data from the software product can be stored in a User-defined filename:

- A. Enter a *filename*.**xls** for storage in a spreadsheet.
- B. Enter *filename*.**doc** for Output Data storage in a word processor.
- C. Enter *filename*.**txt** for Output Data storage as a text file.

The Output Data files can be used for presentations to your Customers, e-mails to your colleagues, and for graphical plots of your Output Data.

5.0 User Data Files:

For the Analysis Option, the software product reads a User's Input Data filename to analyze the Frequency response of physical dimensions planned for manufacture of your Rectangular Waveguide Transmission Line.

Atlanta RF LLC Office: 770-645-0315 www.AtlantaRF.com

Quick Start User Manual:

You can create any number of User Input Data files, each of which defines the actual physical dimensions of your Rectangular Waveguide Transmission Lines. Once created, you can enter that Input Data filename when asked by the software product, for Frequency Analysis and for comparison with actual measured swept-frequency data for that design.

6.0 Software Bugs

Every effort has been applied to minimize "software bugs" inside the software product. Yet, we invite all Users to notify us if you find one. Many thanks!

Inside the software product, you will find "User-friendly Error Traps", which identify errors in your Data Entry. The software product notifies you when an error is detected and asks for a different Data Entry, so the software product performs within the proper technical bounds for the technology.

7.0 Customer Satisfaction:

Many thanks for purchasing our RF/microwave CAE software product. We hope you find the product useful in your high frequency designs, both in Synthesis of your designs and in Analysis of your designs. Please let us know where our software product can be improved, and what your needs are for another software product you could use. perhaps we can develop that software product for you.

Our best regards.

Atlanta RF

Quick Start User Manual:

Version 1.0; Release Nov-2012

				Operating Frequency	TE10 Cutoff	RF Powe	er Rating	Theoretical	Inside	Wall
Wayeguide Size MII -W-85 Material			Pango	Erec	(One Atmosphere)		Loss	Dimensions	Thickness	
EIA	EIA JAN		Wateria	Kange	rieq				Dimensions	Thickness
W/G	W/G	(Dash No)	Alloy	(GHz)	(GHz)	CW(kW)	Peak(kW)	(dB/100ft)	(Inches)	(Inches)
WR430	RG104/U	1-027	Copper	1.70-2.60	1.375	95	18230	.393261	4.300x2.150	0.08
	RG105/U	1-030	Aluminum					.590392		
WR340	RG112/U	1-033	Copper	2.20-3.30	1.737	58.5	11870	.533371	3.400x1.700	0.08
	RG113/U	1-036	Aluminum					.801557		
WR284	RG48/U	1-039	Copper	2.60-3.95	2.08	45	7650	.742508	2.840x1.340	0.08
	RG75/U	1-042	Aluminum			36		1.116764		
WR229	RG340/U	1-045	Copper	3.30-4.90	2.577	30	5480	.946671	2.290x1.145	0.064
	RG341/U	1-048	Aluminum			24		1.422-1.009		
WR187	RG49/U	1-051	Copper	3.95-5.85	3.156	18	3300	1.395967	1.872x.872	0.064
	RG95/U	1-054	Aluminum			14.5		2.097-1.454		
WR159	RG343/U	1-057	Copper	4.90-7.05	3.705	15	2790	1.533-1.160	1.590x.795	0.064
	RG344/U	1-060	Aluminum			12		2.334-1.744		
WR137	RG50/U	1-063	Copper	5.85-8.20	4.285	10	1980	1.987-1.562	1.372x.622	0.064
	RG106/U	1-066	Aluminum			8		2.955-2.348		
WR112	RG51/U	1-069	Copper	7.05-10.00	5.26	6	1280	2.776-2.154	1.122x.497	0.064
	RG68/U	1-072	Aluminum			4.8		4.173-3.238		
WR102	-	1-156	Copper	7.00-11.00	5.786	5	1020	3.516-2.217	1.020x.510	0.64
	RG320/U	1-158	Aluminum			4		5.285-3.333		
WR90	RG52/U	1-075	Copper	8.20-12.40	6.56	3	760	4.238-2.995	.900x.400	0.05
	RG67/U	1-078	Aluminum			2.4		6.506-4.502		
WR75	RG346/U	1-081	Copper	10.00-15.00	7.869	2.8	620	5.121-3.577	.750x.375	0.05
	RG347/U	1-084	Aluminum			2.2		7.698-5.377		
WR62	RG91/U	1-087	Copper	12.40-18.00	9.49	1.8	460	6.451-4.743	.622x.311	0.04
	RG349/U	1-091	Aluminum			1.4		9.700-7.131		
WR51	RG352/U	1-094	Copper	15.00-22.00	11.54	1.2	310	8.812-6.384	.510x.255	0.04
	RG351/U	1-098	Aluminum			1		13.250-9.598		
WR42	RG53/U	1-100	Copper	18.00-26.50	14.08	0.8	170	13.80-10.13	.420x.170	0.04
	RG121/U	1-104	Aluminum	20.00		0.6		20.74-15.23		0.01
WR34	RG354/U	1-107	Copper	22 00-33 00	17 28	0.6	140	16 86-11 73	340x 170	0.04
WI(04	RG355/U	1_111	Aluminum	22.00-00.00	11.20	0.5	140	25 35-17 62	.0407.170	0.04
W/D20	RG274/U	3 007	Coppor	26 50 40 00	21.1	0.5	100	23.03 17.03	280v 140	0.04
VVR20	KG2/1/U	3-007	Aluminum	20.30-40.00	21.1	0.5	100	23.02-13.77	.2008.140	0.04
W/Doo	- DC070///	3-009	Aluminum	22.00.50.00	26.25	0.4	60	34.40-23.59	2245 442	0.04
WR22	RG272/U	3-011	Copper	33.00-50.00	20.35	0.4	60	32.44-22.05	.224X.112	0.04
WR19	RG358/U	3-015	Copper	40.00-60.00	30.69	0.3	50	39.81-28.60	.188x.094	0.04

Standard Rectangular Waveguide Sizes

Atlanta RF LLC Office: 770-645-0315 www.AtlantaRF.com

WRguide.DEF con	tains all Default Data values read by Program: WRguide.exe.
0.9	:A = Waveguide WidthInches
0.4	:B = Waveguide HeightInches
10.0	:F = Operating FrequencyGHz
13.0	:Fmax = Analysis Stop FrequencyGHz
7.0	:Fmin = Analysis Start FrequencyGHz
0.5	:Fstep = Analysis Frequency Step SizeGHz
1.0	:IZ = Selects Impedance type: $Z(P,I)$, $Z(V,I)$ or $Z(P,V)$
4.0	:RES = Conductor's ResistivityMicro-Ohm-cm
0.45	:S = Width of Central RegionInches
125.0	:SR = Conductor's RMS Surface RoughnessMicro-Inches
300.0	:Zmax = Maximum Impedance (Synthesis)Ohms
50.0	:Zmin = Minimum Impedance (Synthesis)Ohms
200.0	:Zo = Desired Impedance (Synthesis)Ohms
25.0	:Zstep = Impedance Step Size (Synthesis)Ohms
WRguide.DAT	:FN = Default filename for your Output Data storage
	The first 20 characters are read by WRguide.exe
This Default Data F	File: WRguide.DEF is read by RF/microwave software product:
WRguide.exe wher	n you start the program. As such, the executable file
(WRguide.exe) and	this Default Data File (WRguide.DEF) must be located in
the same Folder or	Subfolder in your computer.
The executable pro	ogram (WRguide.exe) reads the first 20 characters in each
line from WRguide.	.DEF, so keep those first 20 characters for data, and do not
shorten any line in	this Default Data File: WRguide.DEF.
The User is invited	to change any/all data values in WRguide.DEF to data
values you commo	nly use for your RF/microwave designs in Rectangular Waveguide
Transmission Lines	s, so you do not have to enter data values when prompted by
WRguide.exe (just	press ENTER on your computer's keyboard and your Default
Data values will be	assigned to that data entry).
NOTE: The default	data values snown above are for standard WR-90 Rectangular
vvaveguide operati	ng across its Frequency Range: 8.2 to 12.4 GHz.
Theolesisters	
Thank you for choc	USING ALIANTA KE TOF YOUR KE/MICROWAVE CAE SOftware products.

Figure 2-1: Baseline data entries (and Instructions) in **Default Data file**: WRguide.DEF

Atlanta RF LLC Office: 770-645-0315 www.AtlantaRF.com

Figure 3-1: Typical Input Data entry for Dimensional Synthesis in WRguide.exe

Atlanta RF LLC Office: 770-645-0315 www.AtlantaRF.com

Atlanta RF LLC <u>www.AtlantaRF.com</u> Sa Office: 770-645-0315

VRguide (v.	. 1.0)		D	ate:10/1	6/2012 at	9:28:32	Hours	
Copyrię	ght 20 ⁻	12 Atlant	a RF Sol	ftware (w	ww.Atlan	taRF.cor	n)	
RF/Micr	rowave		iter-Aideo	d Enginee	ering Des	ign Data	For	
Red	ctangu	liar wave	eguide Ti	ransmiss	ion Lines	•		
A = 0.9	000"	W	/G Heiah	t Svnthe	sis R	ES = 4.0	0000	
B = 0.2924" ====================================								
LC10 = 1.8000" (OPTION 2) FC10 = 6.557 GHz								
					FC	20 = 13.	114 GHz	
Z(P,I) = 20	0.00 C	Ohms						
at 10	.000 G	iHz.						
V	Navele	enath	Guide	Guide Impedances				
Fre						Total	Peak	
quency Fre	e-Sp	Guide	Z(P,I)	Z(V,I)	Z(P,V)	Loss	Power	
(GHz) (ln.)	(ln.)	(Ohms)	(Ohms)	(Ohms)	(dB/Ft)	(kW)	
7 0000 1	6861	4 8169	431.38	549 25	699.33	0 2226	82 92	
7.5000 1.	5737	3.2420	311.08	396.08	504.30	0.1595	114.99	
8.0000 1.	4754	2.5754	263.59	335.61	427.31	0.1348	135.71	
8.5000 1.	3886	2.1822	237.31	302.15	384.71	0.1214	150.73	
9.0000 1.	3114	1.9146	220.45	280.69	357.38	0.1132	162.26	
9.5000 1.	2424	1.7170	208.68	265.70	338.30	0.1077	171.41	
10.0000 1.	1803	1.5633	200.00	254.65	324.23	0.1039	178.85	
10.5000 1.	1241	1.4392	193.34	246.16	313.42	0.1013	185.02	
11.0000 1.	0730	1.3364	188.07	239.46	304.89	0.0995	190.20	
12,0000 0	0263	1.2493	183.81	234.03	297.98	0.0982	194.61	
12.0000 0.	9030	1.1744	177.26	229.00	292.29	0.0973	201 69	
	9442 9079	1.1091	174.88	220.03	283 50	0.0908	201.00	
Infinity	5015	1.0010	151.00	192.26	244 79	0.0000	236.89	

Atlanta RF LLC Office: 770-645-0315

/Rguide Copy RF/M F	(v. 1.0) /right 20 icrowave Rectangu	12 Atlant e Compu Ilar Wav	ta RF So iter-Aide eguide T	Date:10/ oftware (d Engine ransmis	/16/2012 www.Atla eering D sion Line	at 9:27: antaRF.co esign Dat es:	51 Hours om) ta For	
A = 0).9000"	Imp	bedance	Analysis	s F	RES = 4.	0000	
B = 0).4000"	=====	======		===	SR =125	.000 u"	
$_{\rm LC10} = 1$	1.8000"		(OPTIO	N 1)	F	C10 = 6.5	557 GHz	
		FC20 = 13.114 GH						
	Wavele	ngth	Guid	e Imped	ances			
Fre						Total	Peak	
quency F	-ree-Sp	Guide	Z(P,I)	Z(V,I)	Z(P,V)	Loss	Power	
(GHz)	(In.)	(In.) ((Ohms)	(Onms)	(Ohms)	(dB/Ft)	(KVV)	
7.0000	1.6861	4.8169	590.12	751.36	956.66	0.1845	113.43	
7.5000	1.5737	3.2420	425.55	541.82	689.87	0.1308	157.30	
8.0000	1.4754	2.5754	360.58	459.10	584.55	0.1095	185.64	
8.5000	1.3886	2.1822	324.63	413.33	526.27	0.0979	206.20	
9.0000	1.3114	1.9146	301.57	383.97	488.89	0.0905	221.97	
9.5000	1.2424	1.7170	285.47	363.47	462.79	0.0856	234.48	
10.0000	1.1803	1.5633	273.59	348.35	443.53	0.0821	244.66	
10.5000	1.1241	1.4392	264.48	336.74	428.75	0.0796	253.10	
11.0000	1.0730	1.3364	257.27	327.57	417.07	0.0777	260.18	
11.5000	1.0263	1.2493	251.44	320.15	407.63	0.0764	266.21	
12.0000	0.9836	1.1/44	246.64	314.04	399.84	0.0754	2/1.40	
12.5000	0.9442	1.1091	242.63	308.92	393.33	0.0747	275.89	
13.0000	0.9079	1.0515	239.23	304.59	387.82	0.0743	279.81	
niinity		206.57	263.01	334.87	324.05			
n Contro	Degion	of C		Doroont I	Dowor -	01 0 20/		

Figure 4-2: Typical Output Data for Impedance Analysis from WRguide.exe

Atlanta RF LLC Office: 770-645-0315 www.AtlantaRF.com