Quick Start User Manual: TEMfilter

1.0 Getting Ready:

The software product you purchased is located inside a ZIP file that you can open, by following these steps:

- 1. Double-click on the ZIP file you purchased. This action starts the ZIP Wizard application, which contains the software product.
- 2. The ZIP Wizard automatically opens the software product you purchased and stores it inside your computer.
- 3. Once the software product is unzipped, right-click on the application's *filename* and single-click: "Extract". This action will extract all files located inside the software product and store them inside your computer:
 - a. *TEMfilter.exe*: The executable software product.
 - b. TEMfilter.DEF. Default Data File read by TEMfilter.exe
 - c. Quick Start User Manual. This User Manual.
 - d. *License*: License Agreement for the software product.
- 4. NOTE: All files unzipped inside your computer must be located in the same file folder, since several Data Files are read by the executable software product.
- 5. Open the License Agreement so you know the terms & conditions for using the software product. Return the software product for a full refund if you do not agree with those terms & conditions, as stated in the License Agreement.
- 6. Open the Default Data File: *TEMfilter.DEF* using Notepad and read the description contained inside.

Once the above software files are extracted and stored inside your computer, just double-click on the executable file to start using the product.

2.0 How I Works:

Software product: *TEMfilter.exe* performs a Frequency Analysis of multi-section Bandpass Filters and/or multi-section Bandstop Filters constructed in a non-dispersive transmission-line medium. That is: Bandpass & Bandstop Filters propagating in a TEM-mode. This software product uses pure mathematics for Bandpass Filters & for Bandstop Filters, without regard to the construction method, so it allows the User to explore RF/microwave performance limits of practical Bandpass/Bandstop Filters, like: Combline Bandpass Filters, Interdigital Bandpass Filters, etc. when constructed in a non-dispersive transmission-line medium.

The executable file: *TEMfilter.exe* reads the Default Data File: *TEMfilter.DEF* each time you start the program. As such, you can change Data Entries inside *TEMfilter.DEF* to suite your most common multi-section Bandpass & Bandstop Filter designs, using the guidelines written in *TEMfilter.DEF*.

When you start using the software product, you are asked to enter key design parameters for your Bandpass or Bandstop Filter. If you press <ENTER> on your computer's keyboard, the software product uses the Data Entry from your Default Data File: *TEMfilter.DEF* for that design parameter. As such, you can change any/all Data Entries in *TEMfilter.DEF* to suite your most common Bandpass or Bandstop Filter designs, without having to enter those values when asked

Atlanta RF LLCwww.AtlantaRF.comSales@AtlantaRF.comOffice: 770-645-0315FAX: 404-521-4677

Quick Start User Manual:

by the executable file: *TEMfilter.exe*. Just press <ENTER> on your computer's keyboard and your Default Data values are used for that Data entry by the software product.

Figure 2-1 shows the baseline data entries for Default Data file: TEMfilter.DEF.

Certain design parameters have a "default answer", shown as an asterisk (*), which enables you to press $\langle ENTER \rangle$ on your keyboard, if that "default answer" (= *) is your selection.

Lastly, all Data entries (including Default Data entries) are included in the Output Data format so you know the basis for the Frequency Analysis of your multi-section Bandpass or Bandstop Filter.

Most data entries are straight-forward and easy to understand for those skill-at-the-art of RF/microwave design......and those not-so-skilled. So, let us know where improvements are needed as you operate the software product.

3.0 Screen Shots: Input Data

Screen-shots for User Input Data entry are shown in Figure 3-1 and Figure 3-2 for a Frequency Analysis of a multi-section Bandpass Filters and for a multi-section Bandstop Filter, respectively.

4.0 Screen Shots: Output Data

Screen-shots of Output Data calculated by the software product are shown in Figures 4-1 and in Figure 4-2 for Frequency Analysis of a multi-section Bandpass Filter and for a multi-section Bandstop Filter, respectively.

The Output Data from the software product can be stored in a User-defined filename:

- A. Enter a *filename*.**xls** for storage in a spreadsheet.
- B. Enter *filename.doc* for Output Data storage in a word processor.
- C. Enter *filename*.**txt** for Output Data storage as a text file.

The Output Data files can be used for presentations to your Customers, e-mails to your colleagues, and for graphical plots of your Output Data.

5.0 Reserved for later use

6.0 Software Bugs

Every effort has been applied to minimize "software bugs" inside the software product. Yet, we invite all Users to notify us if you find one. Many thanks!

Inside the software product, you will find "User-friendly Error Traps", which identify errors in your Data Entry. The software product notifies you when an error is detected and asks for a different Data Entry, so the software product performs within the proper technical bounds for the technology.

Atlanta RF LLC Office: 770-645-0315 www.AtlantaRF.com

7.0 Customer Satisfaction:

Many thanks for purchasing our RF/microwave CAE software product. We hope you find the product useful in your high frequency designs, both in Synthesis of your designs and in Analysis of your designs. Please let us know where our software product can be improved, and what your needs are for another software product you could use. perhaps we can develop that software product for you.

Our best regards.

AtlantaRF

Atlanta RF LLC Office: 770-645-0315

TEMfilter.DEF cor	ntains all Default Data values read by Program: TEMfilter.exe
1.0	:IBPBS = 1.0 for Bandpass;= 2.0 for Bandstop;= 3.0 for Both
1000.0	:Fo = Filter's Center FrequencyMHz
200.0	:BW = Filter's Passband BandwidthMHz
0.05	:RIPPLE= Passband Amplitude RippledB
800.0	:F1 = Out-of-band Skirt Freq where A1 is neededMHz
40.0	:A1 = Minimum Attenuation needed at Skirt FreqdB
9.0	:N = Number of Sections/Poles in the Filter
500.0	:Qu = Unloaded Q of the Filter
700.0	:Fstart = Analysis Start FrequencyMHz
1300.0	:Fstop = Analysis Stop FrequencyMHz
50.0	:Fstep = Analysis Step FrequencyMHz
TEMfilter.DAT	:FN = Default filename for your Output Data Storage
	The first 20 sharesters are used by TEM/illing ave
	The first 20 characters are read by TEMIIIter.exe
Default Data File:	TEMfilter DEE is read by RE/microwave software product:
TEMfilter exe whe	an you start the program. As such the executable file
(TEMfilter exe) an	nd this Default Data File (TEMfilter DEF) must be located
in the same Folde	er or Subfolder in vour computer.
	,,
The executable p	rogram (TEMfilter.exe) reads the first 20 characters in each
line from TEMfilte	r.DEF, so keep those first 20 characters for data, and do
not shorten any lir	ne in this Default Data File: TEMfilter.DEF.
The User is invite	d to change any/all data values in TEMfilter.DEF to data
Values that you co	ommonly use for your RF/microwave designs of TEM-mode
Banopass & Bano	Istop Filters, so you do not have to enter data values when
vour Default Date	ninel.exe (just press ENTER on your computer's keyboard and
Thank you for cho	posing Atlanta RF for your RF/microwave CAE software products.
,	

Figure 2-1: Baseline data entries (and Instructions) in **Default Data file**: TEMfilter.DEF

Figure 3-1: Typical Input Data entry for a **Bandpass Filter's** Frequency Analysis in TEMfilter.exe

> Atlanta RF LLC Office: 770-645-0315

www.AtlantaRF.com

Copyright 2012 Atlanta RF Software (www.AtlantaRF.com) RF/Microwave Computer-Aided Engineering Software. Program: TEMfilter (v. 1.0) Date:10/16/2012 at 16: 3:37Hours This Program ANALYZES the RF/Microwave performance characteristics of standard non-dispersive (TEM-mode) BANDPASS & BANDSTOP Filters exhibiting a Tchebyscheff response across its passband frequencies. Please enter the following Design Data : -Select Filter TYPE: *1 = Bandpass Filter 2 = Bandstop Filter 3 = BothFilter TYPE selected = 2 -Filter`s Center Frequency, MHz= **1000.0** User Data -Filter`s Passband Bandwidth, MHz= 200.0 Entries are -Desired Bandwidth for Filter = 20.00 % shown in -Enter Passband RIPPLE Level in dB: **RED text** - Enter 0.01 for VSWR = 1.10:1 -*Enter 0.05 for VSWR = 1.24:1 - Or a value of your choice. Desired Passband Ripple Level = 0.05 -Select METHOD for entering Number of Cavities: *1: User enters Number of Cavities, N 2: User enters Attenuation at Skirt Frequency METHOD selected = 1-Number of Resonators/Poles, N = 9 -Unloaded Q in each Resonator = 500.0 Enter Frequency range for Filter ANALYSIS: -Analysis Start Frequency, MHz = 700.0 -Analysis Stop Frequency, MHz = 1300.0 -Analysis Step Frequency, MHz = 50.0 Select Output Print FORMAT: *1 = Two-Port response with VSWR. 2 = Two-Port response with Return Loss. Print FORMAT selected = 1 Is Output Data STORAGE desired? (1=Yes) = 1 Enter a FILENAME (up to 20 characters) for Output Data storage: -Enter: Filename.xls for storage in a spreadsheet -Enter: Filename.doc for storage in a word processor -Enter: Filename.txt for storage as a text document Enter your FILENAME for Output Data Storage: TEMfilter.DAT

Figure 3-2: Typical Input Data entry for a **Bandstop Filter's** Frequency Analysis in TEMfilter.exe

> Atlanta RF LLC Office: 770-645-0315

www.AtlantaRF.com

TEMfiltor (v	, 1 0)		Date:1		 2 at 22://3	
	right 2012 /	Atlanta RF	- Software	(www.At	lantaRF.c	om)
RF/Mic	rowave Co	mputer-A	ided Engir	neering D	esign Dat	a for
Multi	-Section Fil	ters Exhib	biting a Tc	hebysche	eff Respon	ise.
ΑΝΑΙ Υ	SIS of the	Theoretic	al Electric	al Circuit	for your	
Filter re	esults in the	e following	g frequenc	y respons	se:	
Flow	<i>v</i> = 900.00	0 MHz	Resr	onse	= Bandnas	22
Fo	= 1000.00	0 MHz	# of	Poles =	= 9	50
Fhig	h= 1100.0	00 MHz	Rip	ole (Am)	= 0.050 dE	3
BŴ	= 200.00	0 MHz	Unlo	aded Q	= 500.00	
	E	Bandpass	Filter Res	ponse		
Frequency	- Mayelend	th Loss	 Timo Dolay	·····		E/Eo
(MHz)	(Inches)	(dB)	(nsec)	(deg)	VOVIR	1/10
700 00	16 8612	-112 44	0 6086	770 28	999 000	0 7000
750.00	15.7371	-97.13	0.8509	761.37	999.000	0.7500
800.00	14.7536	-77.63	1.3871	746.75	999.000	0.8000
850.00	13.8857	-50.00	3.1976	716.46	999.000	0.8500
900.00	13.1143	-1.67	33.2215	513.67	1.240	0.9000
950.00	12.4241	-0.74	13.3304	212.90	1.240	0.9500
1000.00	11.8029	-0.63	11.4930	0.00	1.000	1.0000
1050.00	11.2408	-0.74	12.0593	-212.90	1.240	1.0500
1100.00	10.7299	-1.67	27.1539	-513.67	1.240	1.1000
1150.00	10.2633	-50.00	2.3554	-716.46	999.000	1.1500
1200.00	9.8357	-77.63	0.9172	-746.75	999.000	1.2000
1250.00	9.4423	-97.13	0.5024	-761.37	999.000	1.2500
1300.00	9.0791	-112.44	0.3186	-770.28	999.000	1.3000

Figure 4-1: Typical Output Data for **Frequency Analysis** of a Bandpass Filter from TEMfilter.exe

Atlanta RF LLC Office: 770-645-0315 www.AtlantaRF.com

EMfilter (v	/. 1.0)		Date:1	0/16/2012	2 at 16: 3:3	7Hours
Сору	right 2012 /	Atlanta R	RF Softwar	e (www.A	tlantaRF.c	com)
RF/Mi	crowave Co	omputer	Aided Eng	gineering	Design Da	ita for
Multi	-Section Fi	Iters Exh	ibiting a T	chebysch	eff Respoi	nse.
ANAI Y	SIS of the	Theoreti	ical Electri	cal Circui	t for your	
Filter re	esults in the	e followir	ng frequen	cy respor	nse:	
			-			
Flow	v = 900.00	0 MHz	Res	sponse	= Bandsto	р
F0 Ebia	= 1000.00		# 0 Dia	TPOIES	= 9	D
FIIIG B\//			Rij Uni	opie (Am)	= 0.050 a	D
Dvv	- 200.00	/0 101112	Uni		- 000.00	,
	Ba	andstop	Filter Resp	oonse		
Frequency	 Waveleng	th Loss	Time Del:	 av Phase		F/Fo
(MHz)	(Inches)	(dB)	(nsec)	(dea)		1/10
	····· /					
700.00	16.8612	-0.02	1.3354	-139.10	1.000	0.7000
750.00	15.7371	-0.03	1.9575	-168.21	1.000	0.7500
800.00	14.7536	-0.06	3.1618	-212.90	1.000	0.8000
850.00	13.8857	-0.15	6.3243	-293.16	1.006	0.8500
900.00	13.1143	-21.04	29.7342	-513.07	347.471	0.9000
90.00	12.4241	-20.10	4.3303	-740.75	347.431	0.9500
1000.00	11.2029	-72.07	1 3303	7/6 75	333.000	1.0000
1100.00	10 7299	-20.10	29 7342	513.67	347 433	1 1000
1150.00	10 2633	-0.15	6 3243	293 16	1 006	1 1500
1200.00	9 8357	-0.06	3 1618	212.90	1 000	1 2000
1250.00	9.4423	-0.03	1.9575	168.21	1.000	1.2500
1300.00	9.0791	-0.02	1.3354	139.10	1.000	1.3000

Figure 4-2: Typical Output Data for **Frequency Analysis** of a Bandstop Filter from TEMfilter.exe

Atlanta RF LLC Office: 770-645-0315 www.AtlantaRF.com